The BiTE® universe
is expanding
with the goal of targeting
multiple tumor types
Learn about BiTE® molecules
Explore tumor environments
*This experience is best viewed in the current version of Firefox or Chrome.
Back to menu
Learn how BiTE® molecules are designed to fight cancer
In the body, cancer cells are identified by cytotoxic T cells and eliminated via apoptosis.
However, many cancer cells have developed mechanisms that allow them to evade the immune system, and thus survive and proliferate.
These may include: impaired T cell toxicity, immune suppression, or downregulation of MHC and other factors associated with antigen presentation.
BiTE® immuno-oncology technology is designed to overcome these evasive mechanisms by binding directly to surface antigens on the targeted cancer cell.

BiTE® molecules are designed to engage a patient’s own T cells to directly target cancer cells, with no ex vivo manipulation of the T cells.
BiTE® molecules are engineered from two variable domains: one is specific to CD3 on T cells, the other is specific to a surface antigen highly expressed on the targeted cancer cell.
Half-life extended (HLE) BiTE® molecules contain a fragment-crystallizable (Fc) domain that is designed to extend their time in the body before elimination.
The BiTE® immuno-oncology platform is versatile, allowing for a BiTE® molecule to be engineered to target a tumor-associated antigen across both solid and hematologic malignancies.
Try building a BiTE® molecule that is designed to target this cancer cell.
Build a BiTE® molecule
BiTE® molecule incomplete
Select and drag the domain that is specific to the tumor-associated antigen.
BiTE® molecule complete
Well done! You’ve successfully built a BiTE® molecule designed to target the tumor-associated antigen CD33. T cells are now able to engage with target cancer cells and may trigger apoptosis.
Explore tumor environments
Loading
Bone marrow

Multiple myeloma

Not yet explored
Loading
Blood vessel

Acute myeloid leukemia

Not yet explored
Loading
Prostate acinus

Prostate cancer

Not yet explored
Loading
Bronchus

Small-cell lung cancer

Not yet explored
Back to environments
Explore the {{ environment_name }}
{{ factoids_number }} of {{ factoids_number_total }} factoids found
Explore the environment and collect all {{ factoids_number_total }} factoids to release BiTE® molecules.
{{ factoid.title }}
Explore the {{ environment_name }}
{{ factoids_number }} of {{ factoids_number_total }} factoids found
Now that you've finished exploring, release BiTE® molecules to see their potential impact.
Release BiTE® molecules
No BiTE® molecule released
Drag the BiTE® molecule that targets {{ env_cancer }} into the environment.
The versatility of the BiTE® platform allows it to be engineered to target a tumor-associated antigen across both solid and hematologic malignancies.

BiTE® molecule released
Watch the simulation to see the potential impact of BiTE® molecules on the environment.
BiTE® molecule released
Continue exploring the environment to watch BiTE® molecules in action.
BiTE® molecule released
Move on to the next section to discover the potential impact of BiTE® molecules.
Discover the potential impact
of BiTE® molecules
Or, replay the simulation and interact with the environment to watch BiTE® molecules in action.
Replay the simulation
{{ hotspots_number }} of {{ hotspots_number_total }} hotspots found
Click on hotspots to learn more about the potential impact of BiTE® molecules.
Explore another environment
{{ environment_name.charAt(0).toUpperCase() + environment_name.slice(1) }}
Myeloma cell
T cell
Osteoclast
Stromal cell
Osteoblast
Plasma cell
Leukemia cell
RBC
Endothelial cell
T cell
Cancerous gland cell
T cell
Neuroendocrine cell
Healthy gland cell
Cancer cell
T cell
Neuroendocrine cell
Goblet cell
Ciliated endothelial cell
Simulation in progress...
Cancer cell
HLE BiTE® molecule
T cell
BiTE® molecule
T cell
Cancer cell
Cancer cell
HLE BiTE® molecule
T cell
Cancer cell
T cell
HLE BiTE® molecule
Apoptosis triggered
Apoptosis triggered
Apoptosis triggered
Apoptosis triggered
HLE BiTE® molecule
T cell
Myeloma cell
HLE BiTE® molecule
T cell
Apoptosis triggered
BiTE® molecule
T cell
Leukemia cell
BiTE® molecule
T cell
Apoptosis triggered
HLE BiTE® molecule
T cell
Cancer cell
HLE BiTE® molecule
T cell
Apoptosis triggered
HLE BiTE® molecule
T cell
SCLC cell
HLE BiTE® molecule
T cell
Apoptosis triggered
To rotate the environment,
{{ copy.tutorial_rotate }}
To zoom in or out,
{{ copy.tutorial_zoom }}
{{ copy.click }} on factoids to collect them
Simulation paused.

When ready, {{ copy.click.toLowerCase() }} the button below and dive into the environment to reveal more BiTE® molecules in action.
References
1. Frankel S, et al. Curr Opin Chem Biol. 2013;17:385-392.
2. Baeuerle PA, et al. Curr Opin Mol Ther. 2009;11:22-30.
3. Weidle UH, et al. Cancer Genom Proteom. 2013;10:1-18.
4. Yuraszeck T, et al. Clin Pharmacol Ther. 2017;101:634-645.
5. Choi BD, et al. Expert Opin Biol Ther. 2011;11:843-853.
6. Nagorsen D, et al. Exp Cell Res. 2011;317:1255-1260.
7. Wickramsinghe D. Discov Med. 2013;16:149-152.
8. Raum T, Münz M, Brozy J, inventors. BCMA and CD3 bispecific T cell engaging antibody constructs. US Patent 2017/0218077 A1. August 3, 2017.
9. Krstic RV. Human Microscopic Anatomy. Berlin, Germany: Springer-Verlag; 1994:6-9,62-63,140-143,374-375.
10. Kopp HG, et al. Physiology. 2005;20:349-356.
11. Karaoz E, et al. Histochem Cell Biol. 2009;132:533-546.
12. Bone Research Society. www.boneresearchsociety.org. Accessed August 4, 2020.
13. Kassem M, et al. APMIS. 1992;100:490-497.
14. Hatzoglou A, et al. J Immunol. 2000;165:1322-1330.
15. Huang HW, et al. PNAS. 2013;110:10928-10933.
16. Coquery CM, et al. Crit Rev Immunol. 2012;32: 287-305.
17. Cho S-F, et al. Front Immunol. 2018;9:1821.
18. Tai Y-T, et al. Blood. 2016;127:3225-3236.
19. Amgen: Our Clinical Trials. 2020. https://www.amgenoncology.com/resources/our_clinical_trials.pdf. Accessed August 12, 2020.
20. Science Source Images. https://www.sciencesource.com/archive/Blood-vessel--SEM-SS292793.html. Accessed August 10, 2020.
21. Khwaja A, et al. Nat Rev Dis Primers. 2016;2:16010.
22. World Health Organization. AML and APL. 2014. https://www.who.int/selection_medicines/committees/expert/20/applications/AML_APL.pdf. Accessed August 11, 2020.
23. Lyle L, et al. Am J Manag Care. 2018;24:S356-S365.
24. American Cancer Society: About Acute Myeloid Leukemia. https://www.cancer.org/content/dam/CRC/PDF/Public/8674.00.pdf. Accessed September 15, 2020.
25. Tallman MS, et al. Blood. 2005;106:1154-1163.
26. Rowe JM, et al. Blood. 2010;116:3147-3156.
27. Krupka C, et al. Blood. 2014;123:356-365.
28. NIH SEER AML 5 Year Survival Rates. https://seer.cancer.gov/explorer/application.html. Accessed September 21, 2020.
29. Baig FA, et al. Oman Med J. 2015;30:162-166.
30. Crawford ED, et al. Urol Oncol. 2017;35S:S1-S13.
31. Frieling JS, et al. Cancer Control. 2015;22:109-120.
32. Heighway J, et al. Atlas Genet Cytogenet Oncol Haematol. 2004;8:264-266.
33. NIH SEER Cancer Statistics Factsheets: Common Cancer Sites. seer.cancer.gov/statfacts/html/common.html. Accessed August 10, 2020.
34. Globocan 2018 World Cancer Statistics. Global Cancer Observatory. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed August 11, 2020.
35. Sabari JK, et al. Nat Rev Clin Oncol. 2017;14:549-561.
36. Iyoda A, et al. Surg Today. Published online ahead of print, March 19, 2020.
37. Bray F, et al. CA Cancer J Clin. 2018;0:1-31.
38. Durie BGM. 2018 ed. North Hollywood, CA: International Myeloma Foundation. https://www.myeloma.org/sites/default/files/images/publications/UnderstandingPDF/concisereview.pdf. Accessed August 11, 2020.
39. Manier S, et al. Nat Rev Clin Oncol. 2017;14:100-113.
40. International Myeloma Foundation. https://www.myeloma.org/what-is-multiple-myeloma. Accessed September 30, 2020.
41. Sherrod AM, et al. Bone Marrow Transpl. 2016;51:2-12.
42. Kumar SK, et al. Mayo Clin Proc. 2004;79:867-874.
43. Morgan GJ, et al. Nat Rev Cancer. 2012;12:335-348.
44. Laszlo GS, et al. Blood Rev. 2014;28:143-153.
45. Hoseini SS, et al. Blood Cancer J. 2017;7:e522. doi:10.1038/bcj.
46. Zugmaier G, et al. Mol Immunol. 2015;67:58-66.
47. Aigner M, et al. Leukemia. 2013;27:1107-1115.
48. American Cancer Society: Key Statistics for Prostate Cancer. https://www.cancer.org/content/dam/CRC/PDF/Public/8793.00.pdf. Accessed August 12, 2020.
49. Strasner A, et al. Front Oncol. 2015;5:128. doi: 10.3389/fonc.2015.00128.
50. Vareki SM. J Immunother Cancer. 2018;6:157. doi:10.1186/s40425-018-0479-7.
51. Conteduca V, et al. Eur J Cancer. 2019;121:7-18.
52. Puca L, et al. Sci Transl Med. 2019;11:eaav0891.
53. Kirby M, et al. Int J Clin Pract. 2011;65:1180-1192.
54. Chang SS. Rev Urol. 2004;6(suppl 10):S13-S18. doi:10.1007/s00595-020-01988-7.
55. Emmett L, et al. J Med Radiat Sci. 2017;64:52-60.
56. American Cancer Society: About Lung Cancer. https://www.cancer.org/content/dam/CRC/PDF/Public/8703.00.pdf. Accessed September 30, 2020.
57. Gazdar AF, et al. Nat Rev Cancer. 2017;17:725-737.
58. Kalemkerian GP, et al. Hematol Oncol Clin N Am. 2017;31:143-156.
59. Owen DH, et al. J Hematol Oncol. 2019;12:61.
60. American Cancer Society. Cancer Facts & Figures. 2020. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf. Accessed August 10, 2020.
61. Sharma SK, et al. Cancer Res. 2017;77:3931-3941.
Please turn on your sound for the best experience
Please rotate your device so it is in Portrait Landscape mode.